Catalyst-where-you-want-it method expands the possibilities for new drug development

Chemists at The Scripps Research Institute (TSRI) and the Shanghai Institute of Organic Chemistry have described a method for creating and modifying organic compounds that overcomes a major limitation of previous methods. The advance opens up a large number of novel chemical structures for synthesis and evaluation, for example, as candidate pharmaceuticals.

The new method was designed to avoid an unwanted side effect – a diversion of a catalyst molecule to the wrong location – that prevents chemists from manipulating many organic compounds in the class known as heterocycles, which are commonly used as drugs.

The newly described technique gets around this obstacle by generating a reactive catalyst at precisely the desired site on a molecule to be modified.

“We have already applied this technology to enable the modification of a wide range of chemical structures, including a complex drug candidate being developed by a major pharmaceutical company,” said Jin-Quan Yu, professor of chemistry at TSRI.

Yu and his colleagues describe the new method in a paper published by the journal Nature.

 

Full story at MNT

Key Osmotic Channel Protein Identified

A big piece of a long-standing puzzle—how cells maintain osmotic pressure via volume-regulated anion channels (VRACs)—appears to have been solved, as researchers reported in Cell today (April 10) having identified a key VRAC protein. Ardem Patapoutian of The Scripps Research Institute in La Jolla, California, and his colleagues found that this protein, which they’ve dubbed “SWELL1,” is a critical component of the osmotic channels that help keep cells from swelling until they explode.

 

Read in full at The Scientist